Saturday, May 12, 2012

Lecture1: Overview


INTRODUCTION

ALGEBRA, Defined:
·        Came from two Arabic word: Al – means “the” and Jabara – means “reunion”
·        Literally, it is called as “the subject of reunion”, because of combining numbers and letters for computation.
·        A branch of mathematics which deals with numbers and letters that is use for computations.

IMPORTANCE OF ALGEBRA
·        This branch of mathematics have various importance in its application. But its main significance is, Algebra, serves as a preparatory subject for better understanding of higher mathematics.

NUMBERS vs. NUMERALS
·        Numbers – are abstract ideas of certain quantity.
·        Numerals – are symbols or representation of numbers.

REAL NUMBER SYSTEM
     ·        Zero = {0}
·        Positive/ Natural/ Counting numbers = {1, 2, 3, 4, …}
·        Whole numbers/ non-negative integers = {0, 1, 2, 3, 4, …}
·        Negative Integers = {-1, -2, -3, -4, …}
·        Integers = {… , -3, -2, -1, 0, 1, 2, 3, …}
·        Fractions = {…, ¼, 1/3, ½, …}
·        Decimals = {…, 0.25, 0.333, 0.5, …}
·        Rational numbers = {D, F, Z}
·        Irrational numbers = {sqrt 2, π, …}
·        Real numbers = {Q, Q’}

Additional definition:
·        Even numbers = {...,-4, -2, 0, 2, 4, …}
·        Odd numbers = {…, -5, -3, -1, 1, 3, 5, …}
·        Prime numbers = {1, 2, 3, 5, 7, 11, …}
·        Composite numbers = {4, 6, 8, 9, 10, …}

PROPERTIES OF EQUALITY
1.)  Reflexive: a = a                                             e.g.: 2 = 2
2.)  Symmetric: if a = b, then b = a                      e.g.: if x = 5, then 5 = x
3.)  Transitive: if a = b and b = c, then a = c        e.g.: if x = y and y = 3, then x = 3
4.)  Addition Property of Equality (APE)
If a = b, then a + c = b + c                           e.g.: if x = 2, then x + 4 = 2 + 4
5.)  Multiplication Property of Equality (MPE)
If a = b, then ac = bc                                    e.g.: if x = 5, then x(3) = 5(3)
6.)  Substitution

PROPERTIES OF REAL NUMBER
1.)  Closure – a real number added, subtracted, multiplied or divided to another real number, the result is always a real number.

e.g.:    Addition: 3 + 15 = 18
            Subtraction: 4 – 19 = -15
            Multiplication: 6 * 2 = 12
            Division: 27/3 = 9

2.)  Commutative – two numbers can be added/ multiplied in any order.
            Addition: a + b = b + a                         e.g.: 5 + 7 = 7 + 5
            Multiplication: ab = ba                          e.g.: 6(-4) = (-4)6

3.)  Associative – when three numbers are added/ multiplied, it makes no difference on either which two are added/ multiplied first.
Addition: (a + b) + c =a + (b + c)   e.g.: (2 + 5) + 8 =2 + (5 + 8)
Multiplication: (ab)c =a(bc)             e.g.: (5*2)*3 =5*(2*3)

4.)  Distributive – Multiplication distributes over addition.
a(b + c) = ab + ac                       e.g.: 4(3 + 6) = 4*3 + 4*6

5.)  Identity – the sum of a number and zero or the product of a number and one is equal to the number itself.
Addition: a + 0 = a                       e.g.: 3 + 0 = 3
Multiplication: a * 1 = a                e.g.: 8 * 1 = 8

6.)  Inverse – the sum of a number and its negative inverse is equal to 0 or the product of a number and its reciprocal is equal to 1.
Addition: a + (-a) = 0                   e.g.: 2 + (-2) = 0
Multiplication: a*(1/a) = 1             e.g.: 6*(1/6) = 1

7.)  Cancellation

ABSOLUTE VALUE
·        It is the number itself regardless of its sign. (||)
e.g.:
1.)   |-13| = 13                               2.)   |5| = 5
3.)   |-|-15|| = 15                         4. )   - |5|= -5

No comments:

Post a Comment